A New Finding in the Dieckmann Type Annulation of a Chiral Half-Thiol Diester Having Latent $\sigma\textsc{-Symmetry}$

Yoshimitsu NAGAO,* Takeshi NAKAMURA, Masahito OCHIAI, Kaoru FUJI, and Eiichi FUJITA[†]

Institute for Chemical Research, Kyoto University, Uji Kyoto 611 † Osaka University of Pharmaceutical Sciences, Kawai, Matsubara 580

It was revealed that the Dieckmann type annulation of a half-thiol diester having latent σ -symmetry did not always proceed in the regiocontrolled fashion even though the reaction yielded the desired β -keto ester. Direction of the regioselectivity dramatically differed depending on the base employed, which was demonstrated by treating an optically pure half-thiol diester with lithium diisopropylamide, dimsylsodium, and dimsylpotassium, respectively.

Recently, we have reported chiral syntheses of (+)-carbacyclin (1) $^{1)}$ and a useful intermediate (3) $^{2)}$ for (+)-isocarbacyclin (2) utilizing a new chiral induction procedure into prochiral σ -symmetric dicarboxylic acid (4) and regiocontrolled Dieckmann-type annulation of optically active half-thiol diester (5) [[α] $_{\rm D}^{25}$ -3.8 $^{\rm O}$ (c 1.0, CHCl $_{\rm 3}$), > 98% enantiomeric excess (ee)]. Through these syntheses, we recognized an interesting new fact that the Dieckmann type annulaiton of half-thiol diester 5 does not always proceed regioselectively.

HO₂C

H

H

HO₂C

H

H

H

H

H

H

H

H

CO-X

H

CO-Y

H

Solit

$$X = Y = OH$$
 $X = OMe$, $Y = SPh$

Dieckmann type condensation reaction has been well known as a fascinating synthetic method for cyclic compounds having the β -keto ester system. However, in the case of unsymmetrical diester, two kinds of annulation products due to the regioisomeric β -keto ester moiety could be formed. Therefore, an improved method of the Dieckmann type annulation involving the complete regiocontrolled

reaction of half-thiol diester 6 into 7 was reported (Eq. 1).4,5)

In due consideration of the previous excellent result, $^{4,5)}$ we investigated regiocontrolled Dieckmann type annulation of a chiral key-intermediate (5) for the (+)-carbacyclin synthesis. $^{1)}$

Firstly, we attempted the annulation employing lithium diisopropylamide (LDA) as follows. To a stirred solution of half-thiol diester (5) (3.16 mmol) in THF (16 ml) and HMPA (3.16 mmol) was added at -78 $^{\rm O}$ C a solution of LDA (7.9 mmol) in THF (16 ml). After being stirred at -55 $^{\rm O}$ C under N $_2$ for 1 h, the reaction mixture was subjected to the usual work-up to give the desired bicyclic β -keto ester (-)-8 in 57% yield together with the starting material 5 in 13% recovery. 1) Enantiomeric purity of compound (-)-8 was shown to be > 98% by its $^{\rm 1}$ H-NMR analysis in the presence of Eu(hfc) $_3$ (Run 1 in Table 1). 1)

Table 1. Dieckmann type annulation of (-)-	Table	1.	Dieckmann	type	annulation	of	(-)-	5
--	-------	----	-----------	------	------------	----	------	---

	Reaction			of	[α] ^t /° ^a)	Enantiomer ratio ^{b)}
Base (mol equi	Solvent iv.)	Temp/°C	Time	 *	of <u>8</u>	(-) -8 : (+) -8
LDA	THF-HMPAC)	-55	1 h	57	-160.9	>99 : <1
(2.5)					(0.21,23)	
NaH	DMSO	15	5 s	42	+35.7	38 : 62
(3.0)					(2.40,21)	
NaH	DMSO-DME	0	5 mir	n 25	+36.0	40 : 60
(3.0)	(1:3)				(0.20,23)	
NaH	DMSO-DME	-35	4 mir	n 23	0.0	49 : 51
(3.0)	(1 : 3)				(0.37,23)	
КH	DMSO	18	2 h	42	+16.1	45 : 55
(2.7)					(0.36,23)	
	LDA (2.5) NaH (3.0) NaH (3.0) NaH (3.0) NaH (3.0)	Base (mol equiv.) Solvent LDA THF-HMPAC) (2.5) NaH DMSO (3.0) NaH DMSO-DME (3.0) (1:3) NaH DMSO-DME (3.0) (1:3) KH DMSO	Base Solvent Temp/°C (mol equiv.) LDA THF-HMPAC) -55 (2.5) NaH DMSO 15 (3.0) NaH DMSO-DME 0 (3.0) (1:3) NaH DMSO-DME -35 (3.0) (1:3) KH DMSO 18	Base Solvent Temp/°C Time (mol equiv.) LDA THF-HMPAC) -55 1 h (2.5) NaH DMSO 15 5 s (3.0) NaH DMSO-DME 0 5 min (3.0) (1:3) NaH DMSO-DME -35 4 min (3.0) (1:3) KH DMSO 18 2 h	Base (mol equiv.) Solvent Temp/°C Time 8 (mol equiv.) Solvent Temp/°C Time 8 (mol equiv.) Solvent Temp/°C Time 8 (2.5) In 57 (2.5) Solvent Sol	Base (mol equiv.) Solvent Temp/°C Time & (c, t/°C) of & (c, t/°C)

a) Determined in CHCl3. b) Determined by 100 MHz $^1\mathrm{H}\text{-NMR}$ analysis in the presence of Eu(hfc)3. c) One mol equiv. of HMPA was employed to (-)-5.

On treatment with 2 M dimsylsodium $^{6,7)}$ (3 mol equiv.) solution in DMSO or 1 M dimsylpototassium $^{8)}$ (3 mol equiv.) solution in DMSO at the required temperature for the required time, compound 5 was surprisingly converted to the (+)-8 excess product, respectively (Runs 2 and 5). The (+)-8 excess product was also obtained even when compound 5 was allowed to react with the same dimsylsodium solution in DMSO-DME (1:3) at 0 $^{\circ}$ C (Run 3). However, the similar annulation at -35 $^{\circ}$ C furnished racemic β -keto ester (8) in very low yield (Run 4).

Based on the experimental results mentioned above, we postulate three kinds of plausible pathways (A - C in Scheme 1) for the formation of cyclic (+) - or (-)- β -keto ester (8). Path C, in which we cannot rationalize the formation of (+)-8 without passing through transient states 9 and 10, should be particularly noteworthy. Thus, the reaction of the chiral compound 5 with LDA would adopt Path A and/or Path B to give (-)-8 exclusively while the annulation with dimsylsodium or dimsylpotassium should preferentially take Path C than Path A and B to yield the (+)-8 excess product.

Scheme 1.
$$CO_{2Me}$$
 CO_{2Me}
 CO_{2Me}

Path C-like annulation was also observed when 4(R)-methoxycarbonyl-1,3-thiazolidine-2-thione monoamide (11) [[α] $_D^{20}$ -120.0° (c 0.23, CHCl $_3$), > 98% diastereomer excess (de)] was allowed to react with KH in THF. Potassium hydride (24.8 wt. % dispersion in mineral oil, 0.93 mmol) was washed with anhydrous hexane under N $_2$ and then dried in vacuo to give an amorphous powder. To a suspension of the KH powder in anhydrous THF (2 ml) was added a solution of compound (-)-11 (0.46 mmol) in THF (4 ml) under ice-cooling with stirring. After being stirred at room temperature for 10 h, the reaction mixture was subjected to the usual work-up to give the (+)-14 excess β -keto thioester [54% yield, mp 56.5 - 57 °C (Et $_2$ 0-hexane), [α] $_D^{20}$ + 35.1° (c 0.28, CHCl $_3$)]. This could be confirmed by the chemical conversion (78% yield) of the (+)-14 excess compound to the (+)-8 excess β -keto methyl ester [[α] $_D^{20}$ + 73.0° (c 0.33, CHCl $_3$)] on treatment with CF $_3$ CO $_2$ Ag in MeOH at 40 °C for 2 h. Thus, participation of 11 and 12 was also strongly suggested in this annulation (Scheme 2).

Generally, one cannot realize the possibility of Path C (Scheme 1) and the course shown in Scheme 2 in the Dieckmann type annulation of racemic 5 and 11 because of their latent σ -symmetry. Nevertheless, we could clarify their significant participation by utilizing optically pure compounds 5 and 11, respectively. Detailed mechanistic studies on the differential annulation depending on the bases are currently in progress.

References

- 1) Y. Nagao, T. Nakamura, M. Ochiai, K. Fuji, and E. Fujita, J. Chem. Soc., Chem. Commun., 1987, 267.
- 2) Y. Nagao, T. Nakamura, M. Kume, M. Ochiai, K. Fuji, and E. Fujita, J. Chem. Soc., Chem. Commun., <u>1987</u>, 269.
- 3) J. P. Schauefer and J. J. Bloomfield, "Organic Reactions," Wiley, New York (1967), Vol. 15 (The Dieckmann Condenzation), pp. 1-203.
- 4) Y. Yamada, T. Ishii, M. Kimura, and K. Hosaka, Tetrahedron Lett., $\underline{22}$, 1353 (1981).
- 5) M. Hatanaka, Y. Yamamoto, H. Nitta, and T. Ishimaru, Tetrahedron Lett., $\underline{22}$, 3883 (1981).
- 6) J. J. Bloomfield and P. V. Fennessey, Tetrahedron Lett., 1964, 2273.
- 7) E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., <u>87</u>, 1345 (1965).
- 8) C. H. Brown, J. Org. Chem., 39, 3913 (1974).

(Received July 7, 1987)